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Introduction 
This document contains extra material that supplements the Robust Java benchmarking article. 

 

Proper benchmarking, and associated areas like statistics, is sufficiently complicated, with so many details 

that matter, that it is impossible to write a comprehensive benchmarking article and still have it be accessible 

to the general developer.  So, the material in the IBM developerWorks articles was a culling of the most 

essential and readable points.  I owe a major debt to my technical editor, Brian Goetz, for his reader's 

perspective and feedback in this area.  But there remains material for the individual seriously interested in 

benchmarking that needs to be documented somewhere.  Hence this document. 

 

In addition to the guidance of my technical editor, I would also like to thank Cliff Click, Doug Lea, David 

Holmes, J. P. Lewis, and Matthew Arnold for their reviews and feedback on early drafts of the article.  Last, 

but not least, thanks to the staff at IBM developerWorks, especially Jennifer Aloi and my production editor 

Eileen Cohen. 

 

  



On-stack replacement: details 
The article’s treatment of on-stack replacement (OSR) was a bit brief.  It was mainly concerned with OSR's 

sometimes suboptimal code quality, and how if you structure your code poorly (as people are wont to do in 

benchmarks), you may draw wrong conclusions.  However, there are a few more details worth mentioning 

here. 

 

First, there are at least three situations where OSR is needed: 

1) interpreted code → optimized native code.  OSR is used to break out of long-running methods that 

are stuck in the interpreter.  This is the case that was emphasized in the article. 

2) optimized native code → interpreted code.  This typically happens while debugging.  Interpreted code 

may be required because the optimizing native code compiler eliminated the breakpoint. 

3) speculative optimized native code → optimized native code.   If the JVM performed speculative 

optimizations whose assumptions no longer hold, then OSR must be used to break out of otherwise 

invalid methods.  The article mentioned this phenomena in its Deoptimization section, but should 

have pointed out that OSR is what is used to handle methods that would otherwise be stuck with 

invalid code. 

 

Second, there are several ways that OSR affects performance: 

a) the cpu cost to perform OSR.  This is always negative. 

b) it can both limit and enable certain optimizations.  Negative: the mere possibility that OSR could 

occur, even if it is never performed, may force the JVM to keep information alive (e.g. not perform 

dead code elimination) because that information may be required if OSR must jump back to 

interpreted code.  Positive: OSR allows aggressive speculative optimizations to be performed, which 

otherwise would have to be skipped if there was no way to undo them (i.e. do deoptimization). 

 

An open question: exactly why does the code in Listing 4 run 2× slower than Listing 5?  Is it because Listing 

4’s code had to run in interpreted mode a lot longer?  Was it the CPU cost to do OSR?  Or is it because of the 

inferior OSR code quality? 

  

http://www.ibm.com/developerworks/library/j-benchmark1.html#osr
http://www.ibm.com/developerworks/library/j-benchmark1.html#deopt
http://www.ibm.com/developerworks/library/j-benchmark1.html#listing4
http://www.ibm.com/developerworks/library/j-benchmark1.html#listing5


Alternatives to the mean 
Part 2 of the article discussed the arithmetic mean as a measure of the central tendency of a population.  It is 

what Benchmark reports.  However, there are other centrality measures.  I will mention a few here, and justify 

why Benchmark does not currently use them. 

 

A common alternative to the mean is the median.  It equals the mean for symmetric distributions, but differs 

for skewed distributions (although a theoretical bound is that it must remain within one standard deviation of 

the mean).  It is sometimes well defined for fat-tailed PDFs like the Cauchy distribution where the mean is 

undefined.  For performance measurements, it has the appealing property of being far less sensitive to 

outliers than the mean. 

 

The median comes from a general family of nonlinear measures known as quantiles.  For instance, the 

median is the same as the 2
nd

 quartile, 5
th

 decile, or 50
th

 percentile.  Two other quantiles that have been 

proposed for performance measures are the 0
th

 and 100
th

 percentiles, more commonly known as the best 

(smallest) and worst (largest). 

 

The argument for using the best (smallest execution time) is that since most noise sources should be positive 

(i.e. they increase the execution time), then taking the best should give the purest, most intrinsic result.  But 

an argument can also be made for using the worst, because it allows you to make robust decisions, for 

instance, when quality of service matters. 

 

Nevertheless, Benchmark sticks with the mean for several reasons.  First, it is conventional: many people 

already understand the concept with no further explanation required.  Second, the mean is sometimes favored 

over the median if the population is at least approximately Gaussian distributed because it is more efficiently 

estimated.  Third (and probably related to its more efficient estimation), the mean is sometimes said to use all 

the information in the samples, unlike any quantile (e.g. best, median, worst).  To see this, note that the mean 

changes whenever you change any sample value (i.e. if any sample changes by ∆, then the mean changes by 

∆ 𝑛 ).  In contrast, quantiles have a more complicated dependence on changes, but there are many scenarios 

in which the quantile does not change at all when a sample changes.  For example, a quantile never changes 

its value when you change a sample that is initially larger then the quantile as long as the change keeps that 

sample larger than the original quantile.  Fourth, the best and worst measurement times may be rejected since 

they are extremely sensitive to outliers.  Finally, all of the quantile measures are nonlinear functions of the 

individual measurement values.  This is a problem for Benchmark, because it appears to be impossible to 

extract the quantile statistics of the individual actions from the measured statistics,
1
 whereas the mean and 

standard deviation are easily extractable. 

 

It is a particular shame to not use the median.  Its superior outlier insensitivity, relative to the mean, has 

already been mentioned.  Furthermore, the scatter measure that is associated with it (average absolute 

deviation from the median) makes more sense than does the standard deviation/variance, which have a 

bizarre weighting whereby they square the deviation from the mean.  This makes them even more sensitive 

to outliers than the mean, which uses equal weighting.  (Are its convenient analytical properties the only 

reason why the standard deviation/variance is used?) 

  

http://www.ibm.com/developerworks/java/library/j-benchmark2.html
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Skewed_distribution
http://en.wikipedia.org/wiki/An_inequality_on_location_and_scale_parameters#An_application:_distance_between_the_mean_and_the_median
http://en.wikipedia.org/wiki/An_inequality_on_location_and_scale_parameters#An_application:_distance_between_the_mean_and_the_median
http://en.wikipedia.org/wiki/Cauchy_distribution
http://en.wikipedia.org/wiki/Quantile
http://en.wikipedia.org/wiki/Quartile
http://en.wikipedia.org/wiki/Decile
http://en.wikipedia.org/wiki/Percentile
http://mathworld.wolfram.com/StatisticalMedian.html
http://mathworld.wolfram.com/StatisticalMedian.html
http://en.wikipedia.org/wiki/Mean_absolute_deviation
http://en.wikipedia.org/wiki/Mean_absolute_deviation


Mean and standard deviation estimators 
Let 𝑥𝑖  denote a series of 𝑛 samples (e.g. measurements) of a random variable X (e.g. program execution 

time). 

 

An estimator for the population's arithmetic mean using just these samples is 

𝑥 =
1

𝑛
 𝑥𝑖

𝑛

𝑖=1

 (1) 

and an estimator for the standard deviation is 

𝑆𝑛 =  
1

𝑛
  𝑥𝑖 − 𝑥  2

𝑛

𝑖=1

 (2) 

which are the formulas described in the text. 

 

(1) is an unbiased estimator of the mean, which is good, but (2) is a biased estimator of the standard 

deviation, which is undesirable. 

 

There exist other estimators for the standard deviation, the most famous of which is the so-called "sample 

standard deviation", which is given by  

𝑆𝑛−1 =  
1

𝑛 − 1
  𝑥𝑖 − 𝜇𝑥 2

𝑛

𝑖=1

 (3) 

𝑆𝑛−1
2  is an unbiased estimator of the variance.  However, taking the square root does not yield an unbiased 

estimator of the standard deviation.  Instead, 𝑆𝑛−1 has these three strikes against it: a) it too is a biased 

estimator, b) it has larger mean squared error (MSE) than 𝑆𝑛 , and c) it is more complicated than 𝑆𝑛 .  Of these 

strikes, note that b) trumps all: MSE is a better criteria than bias to use in choosing among estimators 

because it is more comprehensive (MSE includes variance of the estimator along with its bias).  Thus, there 

is no reason why 𝑆𝑛−1 should ever be favored over 𝑆𝑛 .
2
 

 

For Gaussian distributed populations, there exists an unbiased estimator for the standard deviation that 

amounts to dividing 𝑆𝑛−1 by a complicated constant.  However, I could find no reference stating whether or 

not this estimator has lower MSE than 𝑆𝑛 .   Furthermore, it is preferable to minimize assumptions such as 

taking the PDF to be Gaussian. 

 

  

http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Unbiased_estimator
http://en.wikipedia.org/wiki/Bias_of_an_estimator
http://en.wikipedia.org/wiki/Variance#Population_variance_and_sample_variance
http://en.wikipedia.org/wiki/Bias_of_an_estimator#Estimating_variance
http://en.wikipedia.org/wiki/Bias_of_an_estimator#Estimating_variance
http://en.wikipedia.org/wiki/Standard_deviation#Estimating_population_standard_deviation_from_sample_standard_deviation
http://en.wikipedia.org/wiki/Mean_squared_error#Examples
http://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation


Relating standard deviation to measurement scatter 
If you do not wish to make any assumptions about the probability density function (PDF) except that it has 

finite variance, then the only general conclusions that can be drawn are given by Chebyshev's inequality, 

which says that the probability of a sample lying ≤ 𝑘 standard deviations away from the mean is ≥ 1 −
 1 𝑘2  .  Next, if the PDF is additionally assumed to be unimodal (almost certainly the case for benchmark 

measurements), then the Vysochanskiï-Petunin inequality gives even finer restrictions on the maximal 

spread.  Finally, if you make even stronger assumptions about the PDF, such as that it belongs to some 

parametric family like the Gaussian, then even more powerful restrictions may apply.  Table 1 summarizes 

this tradeoff between assumption strength and conclusion power: 

Table 1.  Relation between standard deviation and sample bounds 

  probability sample within k standard deviations of mean 

  finite variance unimodal Gaussian 

k 1 ≥ 00.00% ≥ 55.56% 68.27% 

2 ≥ 75.00% ≥ 88.89% 95.45% 

3 ≥ 88.89% ≥ 95.06% 99.73% 

 source wikipedia calculated wikipedia 

As you can see, for any PDF assumption, as 𝑘 increases, you are guaranteed to include more of the possible 

values.  Also, for any given value of 𝑘, as you make increasingly powerful assumptions, you increase the 

coverage. 

  

Since the unimodal assumption should hold in benchmarking, while the Gaussian assumption may not, a 

reasonable conclusion from Table 1 is that at least 95% of all execution time measurements should lie within 

three standard deviations of the mean.  

  

http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Chebyshev%27s_inequality
http://en.wikipedia.org/wiki/Unimodal
http://en.wikipedia.org/wiki/Vysochanski%C3%AF-Petunin_inequality
http://en.wikipedia.org/wiki/Location-scale_family
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Standard_deviation#Chebyshev.27s_inequality
http://en.wikipedia.org/wiki/Normal_distribution#Standard_deviation_and_confidence_intervals


Block statistics versus action statistics 
 

Definitions 

The block statistics are those statistics (e.g. mean, standard deviation) that are directly calculated from the 

measured execution times. 

 

I call them block statistics because, in general, each measurement involves a block of multiple task 

invocations.  Recall from the Code warmup section of Part 1 that by default
3
 Benchmark executes task enough 

times so that the cumulative execution time is large enough to diminish time measurement errors.  If task 

takes a long time to execute, then 𝑛 = 1 (only 1 execution is required to meet the time requirement), but if 

task executes in, say, 1 microsecond, then the cumulative result of 𝑛 = 106 executions will be measured. 

 

In addition to multiple task invocations, Benchmark allows the user to specify that the task internally executes 

multiple identical actions.  For example, in Part 2 of the article where benchmarks of the data structure 

access times were carried out, it was useful to define an action as being a single data structure access.  As can 

be seen from task code like Part 2’s Listing 2, each task did multiple such accesses per invocation (via the 

loop inside run), which is why the parent code in Part 2’s Listing 3 used the two argument version of the 

Benchmark constructor to specify the number of actions. 

 

The action statistics are the statistics of these user defined actions.  In general, they must be derived from the 

block statistics because they are not directly measured. 

 

Calculation of the action statistics 

As before, let 𝑛 designate the number of task invocations in each measurement.  Let 𝑚 designate the number 

of actions per task invocation.  Then each measurement is over 𝑎 = 𝑛 × 𝑚 actions. 

 

If 𝑎 = 𝑛 = 𝑚 = 1, then the action statistics are the block statistics.  However, in general, 𝑎 > 1 so the action 

statistics must be calculated from the block statistics. 

 

The mean of a random variable that is the sum of other random variables is always just the sum of the 

constituent means.  Here, this means that the mean scales as 𝑎 (i.e. divide the measurement's mean by 𝑎 to 

get the action's mean). 

 

The standard deviation is more complicated.  The first step is knowing how the action execution times are 

interrelated.  The simplest assumption is that they are independent identically distributed (iid).  In this case, 

the standard deviation scales as  𝑎 (i.e. divide the measurement's sd by  𝑎 to get the action's sd).  This is a 

corollary of the theorem that variances of uncorrelated random variables add.  (Otherwise, if the action 

execution times are not iid but correlated, then the variance of their sum is the sum of their covariances.  

Since their covariances are, in general, unknowable, precise progress is impossible in this case.) 

 

Benchmark operates as follows: the user tells it what 𝑚 is (either explicitly as a constructor argument, or else 

the default value of 1 is assumed); it determines what 𝑛 needs to be during the warmup phase; therefore it 

knows 𝑎.  It does the measurements, calculates the block statistics directly from those measurements, and 

then calculates the action statistics from the block statistics using the scaling rules discussed above. 

 

http://www.ibm.com/developerworks/java/library/j-benchmark1.html#warmup
http://www.ibm.com/developerworks/java/library/j-benchmark1.html#mm
http://www.ibm.com/developerworks/java/library/j-benchmark1.html#mm
http://www.ibm.com/developerworks/java/library/j-benchmark2.html#dsat
http://www.ibm.com/developerworks/java/library/j-benchmark2.html#dsat
http://www.ibm.com/developerworks/java/library/j-benchmark2.html#listing2
http://www.ibm.com/developerworks/java/library/j-benchmark2.html#listing3
http://en.wikipedia.org/wiki/Independent_and_identically-distributed_random_variables
http://en.wikipedia.org/wiki/Variance#Properties.2C_formal


Result report 

Benchmark.toString just reports the action statistics, since those are usually all that the user is interested in, 

while Benchmark.toStringFull reports those plus the block statistics that were actually measured. 

  



Standard deviation measurement issues 
This section argues that it can be difficult, perhaps impossible, to accurately measure the "true" standard 

deviation of the execution time for some tasks (e.g. microbenchmarks).  This seems to be caused by 

environmental noise effects (e.g. operating system context switches).  There appears to be no simple cure.  

Lfsr: a task that should have minimal execution variation 

Consider this Runnable task class: 

Listing 1. Lfsr: a linear feedback shift register task class 
 protected static class Lfsr implements Runnable { 

   

  protected int register = 1; // stores the LFSR state 

  protected int mask = 0xffffffff; 

  protected int taps = (1 << 31) | (1 << 30) | (1 << 28) | (1 << 0); 

  protected long numberTransitions = 1L * 1000L * 1000L; 

       

  public void run() { 

   for (long i = 0; i < numberTransitions; i++) { 

    register = ((register >>> 1) ^ (-(register & 1) & taps)) & mask; 

   } 

  } 

   

  @Override public String toString() { return String.valueOf(register); } // part of DCE prevention 

   

 } 

Lfsr implements a 32-bit linear feedback shift register (LFSR) and is a simplified version of a general class of 

LFSRs.  It is defined as inner class inside Benchmark (see that version for more comments). 

 

LFSRs are simple state machines.  So, every time that you call Lfsr.run, the current state (stored in the 

register field) is advanced to the next state.  Lfsr.run is essentially 2 lines of code: a loop head and its body.  

The loop body involves 6 bitwise and/or unary int operators, so it is very simple and should execute 

extremely fast.  It is 100% CPU bound (no I/O, no synchronization).  No objects are created by an Lfsr 

instance after it is constructed, in particular, executing run repeatedly should never generate any garbage, so 

the garbage collector should never execute.  In spite of the simplicity of the computation, the LFSR state is 

pseudo-random, so it should be impossible for a smart compiler to cut many corners and avoid doing the 

computations.
4
  The sum of all these properties is this: once run has been fully JIT compiled, then it should 

execute with essentially no time variation (assuming that the executing thread is continuously on the CPU, 

and nothing like CPU power throttling takes place).  Think about it: what could be a source of execution time 

variation in the code above?  Do the bitwise operations sometimes take a longer to execute?  Of course not! 

 

Variations actually seen in Lfsr 

So what kinds of execution time variations do you actually see in Lfsr?  Using Benchmark and calling its 

toStringFull method to get a complete report, I obtain this for the block statistics: 

Listing 2. Bock statistics output for Listing 1 

 
run #1: mean = 1.031 s (CI deltas: -394.666 us, +423.214 us), sd = 1.650 ms (CI deltas: -221.499 us, 

+368.772 us) 

run #2: mean = 1.030 s (CI deltas: -260.489 us, +281.354 us), sd = 1.087 ms (CI deltas: -136.216 us, 
+206.500 us) 

run #3: mean = 1.031 s (CI deltas: -247.205 us, +259.635 us), sd = 1.019 ms (CI deltas: -141.767 us, 
+188.889 us) 

(Recall: the block statistics are obtained from the data that was actually measured.  Ignore for now the action 

statistics, since they are calculated from the block statistics, and not directly measured; they will be discussed 

below.) 

 

http://en.wikipedia.org/wiki/Linear_feedback_shift_register
http://forum.java.sun.com/thread.jspa?threadID=5276320&tstart=0
http://forum.java.sun.com/thread.jspa?threadID=5276320&tstart=0
http://en.wikipedia.org/wiki/State_machine


Cause of these variations 

At first glance, the standard deviation (our measure for execution time variation) looks reasonable: 1-2 

milliseconds is merely ~0.1-0.2% of the mean, and a few milliseconds of variation on a task that takes about 

a second to execute sounds like it might be due to time measurement error, say. 

 

But this is not the case: time measurement error can be easily ruled out.  Figure 1 is a graph of block 

execution time as a function of the number of times Lfsr is executed during the measurement: 

Figure 1. Mean versus number of executions 

 
This graph is done using a log-log scale in order to clearly show the five decades of data.  Along with the raw 

data, a fitted line is also shown.  The almost perfect agreement of this line with the data proves that data is 

essentially perfectly linear over a huge scale, even all the way down to 1 execution of Lfsr, which only takes 

a few milliseconds.  If time measurement error was on the order of a few milliseconds, different behavior 

would have been seen: the curve would stop decreasing linearly at small 𝑛, and instead saturate at some noise 

floor.  Since this is not observed, the 1-2 millisecond standard deviation above must come from another 

source besides measurement error. 

 

So what causes the observed execution time variations?  I am pretty sure that the operating system is to 

blame.  Specifically, that it is doing context switches of the benchmarking thread on a semi-random basis.  

Reasons: 

1. Using the Microsoft performance counter,
5
 I can confirm that my dual core XP machine is doing ~2-

4,000 context switches per second.  It is hard to imagine that the benchmarking thread is continuously 

using 1 of the cores. 

2. My understanding of how Windows thread scheduling works is that a given thread has a time 

quantum (12 ms by default?) that it maximally runs for before it is guaranteed to be context switched 

from its core.  It also could get switched before that quantum expires, but it is guaranteed to be 

switched by the end.  (See the  27 Mar 2008, 1:48 PM UTC response by ioria74 in this forum.) 

3. Other people attribute variation in timings to context switches 

 

Regardless of cause, Figure 2 is a graph of the variance (square of the standard deviation) of the block 

execution time as a function of the number of times Lfsr is executed during the measurement: 

http://en.wikipedia.org/wiki/Context_switch
http://forums.microsoft.com/MSDN/ShowPost.aspx?PostID=2415911&SiteID=1
http://lyon-smith.org/blogs/code-o-rama/archive/2007/07/17/timing-code-on-windows-with-the-rdtsc-instruction.aspx


Figure 2. Variance versus number of executions 

 
Note how the fitted line, which is the simple equation 𝑣𝑎𝑟𝐵𝑙𝑜𝑐𝑘𝐹𝑖𝑡 = 𝑐𝑛 with 𝑐 as the only fit parameter 

(there is no constant fit parameter; the y-intercept is taken as 0), is an extremely good match.  Now 𝑛 iid 

random variables always have a variance that is 𝑛 times the individual variance.  Unfortunately, the converse 

is not true: just because the variance grows linearly versus 𝑛 does not prove that it is made up of iid random 

variables.  But it does suggest it, and my speculation that the iid noise sources are actually the context switch 

time variations is consistent with it. 

 

Incidentally, the measurements reported above for my desktop were repeated on the N2 Solaris configuration 

mentioned in Part 2 of the article.  The results are mostly qualitatively the same (e.g. superb linearity of block 

execution time as a function of the number of times Lfsr is executed) but the linearity of the variance is 

considerably less evident (in part, because the variance is so much smaller that it appears that noise is an 

issue). 

 

More thoughts 

So, Lfsr is a special task that should never have execution time variations, yet substantial variations are 

observed that are not due to time measurement error, but must be caused by something in the environment, 

such as context switches.  Since this environmental disturbance should affect every process, therefore it is 

impossible to measure the "true" standard deviation of a task unless its standard deviation is much larger 

than the environmental variations. 

 

So what tasks have sufficiently large "true" standard deviations that they rise above the environmental noise?  

Probably any real application.  Said program will not be purely CPU bound, but will have lots of conditional 

logic/complex branching behavior, cache misses, multithreads and synchronization, I/O, garbage collection 

and object finalization, etc that should all act to cause variations in execution time above the environmental 

noise. 

http://www.ibm.com/developerworks/java/library/j-benchmark2.html#dsat


 

This leaves artificial microbenchmark-like programs, like Lfsr above, whose "true" standard deviation cannot 

be measured.  

 

I am not aware of an easy way to reduce the environmental noise so that you can make more accurate 

measurements.  I tried benchmarking Lfsr using these approaches: 

1. Measuring CPU times instead of wall clock times.  In theory this should work—for single threaded 

benchmarks, and if CPU times were perfectly measured—but in practice I have seen this cause 

greater measurement scatter.
6
 

2. Boosting the main Java thread priority from normal to maximum, hoping that a high priority thread 

will be less frequently context switched.  Result: no effect in environmental noise reduction. 

3. Running Windows in Safe Mode, hoping that minimizing services might reduce the execution time 

variations.  Result: if anything, the variations increased. 

4. Setting the JVM process affinity to just one core of the CPU, hoping that maybe the main Java thread 

would continuously run on that core if the other core is set aside for background operating system 

processes.  Result: if anything, the variations increased.  This might be due to all the other JVM 

threads besides the main one now compteting for time on the same CPU. 

One approach that I have not tried is using a real time operating system, and explicitly configuring it to run 

the benchmarking thread without any preemption.  (Apparently, some operating systems have the concept of 

a "real time thread priority" which is a higher priority than even the normal operating system processes, 

which might achieve this effect).  Also, Linux seems to support suppressing a CPU from responding to 

interrupts, which might also reduce context switches. 

  

http://forum.java.sun.com/thread.jspa?threadID=5153516&messageID=9578995
http://rt.wiki.kernel.org/index.php/CPU_shielding_using_/proc_and_/dev/cpuset
http://rt.wiki.kernel.org/index.php/CPU_shielding_using_/proc_and_/dev/cpuset


Standard deviation blowup 
The excess execution time variation found above manifests itself in a related (and more radical) phenomena 

in the action statistics that I call "standard deviation blowup".  Basically, you sometimes see the standard 

deviation become extremely large, even much larger than the mean, which seems unrealistic. 

 

Examples of standard deviation blowup 

You can already see the hint of this phenomena in Lfsr.  Listing 2 shows the block statistics.  Here is what the 

action statistics look like: 
mean = 4.027 ms (CI deltas: -1.542 us, +1.653 us), sd = 103.149 us (CI deltas: -13.844 us, +23.048 us) 

The sd/mean ratio for the block statistics is ~0.16%, but the corresponding quantity for the action statistics is 

~2.56%, which is 16 times larger. 

 

Here is a better example of "standard deviation blowup", obtained from a "nanobenchmark" (each task 

invocation does even less work than Lfsr.run does): 

Listing 3. Code for a "nanobenchmark" 
 final StringBuilder sb = new StringBuilder("Yes"); 

 Callable<StringBuilder> task = new Callable<StringBuilder>() { 

  public StringBuilder call() { return sb.length() == 3 ? sb.replace(0, 3, "No") :    

 sb.replace(0, 2, "Yes"); } 

 }; 

 System.out.println("StringBuilder.replace: " + new Benchmark(task).toStringFull()); 

Here, task boils down to doing a little char[] manipulation, so it executes extremely fast.  No new objects are 

created over repeated invocations of call.  I get this result (extraneous information removed): 
action statistics: mean = 20.437 ns (CI deltas: -5.229 ps, +5.084 ps), sd = 168.910 ns (CI deltas: -22.590 

ns, +32.759 ns) 

--then the number of actions per block measurement is a = 67108864 

--block statistics: mean = 1.371 s (CI deltas: -350.914 us, +341.209 us), sd = 1.384 ms (CI deltas: -

185.055 us, +268.364 us) 

So, each time measurement was over a block of 67,108,864 actions.  Those block statistics look normal: it 

takes about 1.37 seconds to execute, and has a standard deviation of about 1.38 milliseconds, which is just 

0.1% of the mean.  However, the standard deviation of the action statistics is about 800% of the mean! 

 

Cause of standard deviation blowup 

Why did the action standard deviation blowup like this?  Two reasons.  First, I have already established 

above that the 1.3 ms standard deviation of the block statistics, although it seems small, is actually wrong: it 

is probably not from the task itself but comes from some environmental disturbance like the operating system 

context switching.  The task's true standard deviation—whatever it is—is smaller than this.  Second, the 

scaling rules differ between how the mean for the actions is calculated versus how the standard deviation is 

calculated: the mean scales by 𝑎, which is 67,108,864 for the benchmark above, while the standard deviation 

scales as  𝑎, which is just 8,192 for the benchmark above.  So, miniscule noise in the block statistics gets 

magnified to dominating noise in the action statistics. 

  



Standard deviation warnings 
Summary of the two preceding sections: the "true" standard deviation is sometimes impossible to measure, 

and this can manifest itself in standard deviation values for the action statistics that seem grossly inflated. 

 

There seems to be no simple cure for this phenomena, but is there anything else that can be done?  Yes: 

detect if it is happening, and warn the user.  Benchmark currently takes two approaches. 

 

First, Benchmark executes Lfsr under the exact same conditions (Benchmark.Params inner class) as the user 

supplied task in order to determine the environmental noise floor (which is taken as Lfsr's standard 

deviation).  By default, if this noise floor is 1% or more of task's standard deviation,
7
 then task's standard 

deviation is considered to be affected. 

 

This first approach is simple and easy to understand, but has one defect: the noise floor results are not always 

repeatable.  Above, I showed the results of three runs in which the standard deviation varied by a factor of 

about 1.7, but, in fact, I have seen it vary by a factor of 3 or more. 

 

To ensure that inaccurate standard deviations are detected, Benchmark uses a second approach that is based on 

a simple mathematical model which is applied to the action statistics.  This model can detect situations in that 

the observed mean and standard deviation can only be explained by a small minority of outlier values. 

 

 If either approach finds something, then a warning is issued in the results report. 

  

http://www.ibm.com/developerworks/java/library/j-benchmark2.html#rr


Standard deviation outlier model 
 

Definitions 

Let 𝜇𝐵  and 𝜎𝐵
2 denote the mean and variance of the execution time measurements.  It is irrelevant for the 

argument below whether these are the true population values, or merely sample estimates.  But they are 

assumed to be known quantities, and are what I have been calling the block statistics, which is why the 

subscript 𝐵 is used. 

 

Let 𝑎 denote the number of actions per measurement as before. 

 

Let 𝑡𝑖  where 𝑖 ∈ [1,𝑎] designate the execution times of the actions that constitute some hypothetical 

measurement.  Since the 𝑡𝑖  are execution times, they cannot be negative.  In fact, there is probably some 

positive number 𝑡𝑚𝑖𝑛 that they realistically cannot be smaller than, so they satisfy 

𝑡𝑖 ≥ 𝑡𝑚𝑖𝑛 > 0 (4) 

 

Let 𝜇𝐴 and 𝜎𝐴
2 denote the mean and variance of the 𝑡𝑖 .  They correspond to what I have been calling the 

action statistics.  By definition they obey 

𝜇𝐴 =
1

𝑎
 𝑡𝑖

𝑎

𝑖=1

> 0 (5) 

𝜎𝐴
2 =

1

𝑎
  𝑡𝑖 −  𝜇𝐴 

2

𝑎

𝑖=1

> 0 (6) 

 

Let a scenario consistent with the measurements be defined as some 𝑡𝑖  that obey these equations: 

𝜇𝐵 = 𝑎𝜇𝐴 =  𝑡𝑖

𝑎

𝑖=1

> 0 (7) 

𝜎𝐵
2 = 𝑎𝜎𝐴

2 =   𝑡𝑖 −  𝜇𝐴 
2

𝑎

𝑖=1

> 0 (8) 

These equations follow naturally from assuming that the 𝑎 actions—which are supposed to be identical 

actions—are iid.  This implies that the mean and variance of a measurement that is the sum of these actions is 

therefore the sum of the actions' means and variances. 

 

Note: there is not necessarily any specific measurement that was done whose action execution times should 

be identified with these 𝑡𝑖 .  Indeed, it is highly unlikely that any one of the measurements performed to 

determine 𝜇𝐵 and 𝜎𝐵
2 had a series of 𝑡𝑖  that satisfy those equations.  Instead, the 𝑡𝑖  are merely a series of 

action execution times that are plausible for a measurement.  This is why I refer to it as a hypothetical 

measurement. 

 

The simple outlier model proposed here is that the 𝑡𝑖  are distributed as follows: 

𝑡𝑖 =  
𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑈, 𝑖𝑓 𝑖 ≤ 𝑐

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑖𝑐𝑘 𝑓𝑟𝑜𝑚 𝑎 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝑖𝑓 𝑖 > 𝑐
  (9) 

 



Here, I model every outlier as having the same constant value 𝑈 where 

𝑈 ≫ 𝜇𝐴 > 0 (10) 

is necessary in order to be considered a positive outlier.  The quantity 𝑐 is an integer that satisfies 

1 ≤ 𝑐 ≤ 𝑎 (11) 

 

The non-outlier action execution times are modeled as coming from a Gaussian distribution with mean 𝜇𝑔  

and variance 𝜎𝑔
2.  To be consistent with previous constraints like (4) and (10), require 

𝜇𝐴 > 𝜇𝑔 > 𝑡𝑚𝑖𝑛  (12) 

𝜎𝐴 > 𝜎𝑔 > 0 (13) 

𝜇𝑔 − 𝑡𝑚𝑖𝑛 ≫ 𝜎𝑔  (14) 

To be sure, (4) can never be perfectly obeyed because the left tail of the Gaussian always extends below 

𝑡𝑚𝑖𝑛 , but this error can easily be made as small as desired by making 𝜎𝑔  as small as needed.  For instance, 

𝜎𝑔 <  𝜇𝑔 − 𝑡𝑚𝑖𝑛  4  ensures that over 99.99% of the non-outlier action execution times are > 𝑡𝑚𝑖𝑛 . 

 

Note: I chose to put all the outliers in the lower subscripts and all the non-outliers in the upper subscripts.  In 

reality, you would expect the outliers to be scattered among the non-outliers.  As far as relating the observed 

(block) statistics to the unobserved (action) statistics is concerned, this order does not matter.  I simply chose 

that order to make it easier to understand the math below. 

 

Overview 

Before plunging into the math and getting bogged down by details, an overview of the argument that follows 

is helpful. 

 

The essence is that there can be certain values of 𝑎, 𝜇𝐵, and 𝜎𝐵
2 such that the model above limits the 

maximum valid value of 𝑐 to something < 𝑎.  Define this limit as 𝑐𝑚𝑎𝑥 ; typically 𝑐𝑚𝑎𝑥 ≪ 𝑎.  In other words, 

I will show that there are scenarios where the observed statistics are only explainable by a small number of 

outliers. 

 

Two features drive this restriction on valid values of c. 

 

The first is that execution times must be positive (4).  This means that most of the 𝑡𝑖  have to be clustered near 

𝜇𝐴.  There cannot be too many 𝑡𝑖  that are ≫ 𝜇𝐴 because no negative 𝑡𝑖  are allowed to cancel them out and 

leave (5) satisfied. 

 

The second is the linear nature of the mean requirement (7) versus the quadratic nature of the variance 

requirement (8).  With the mean requirement, it does not matter how the 𝑡𝑖are distributed; each 𝑡𝑖  makes an 

equal contribution in this sense: adding ∆ to any of the 𝑡𝑖  changes the mean by the same amount.  In contrast, 

with the variance requirement, the larger 𝑡𝑖  make more of a contribution to the variance than do the smaller 

values: adding ∆ to one of the larger 𝑡𝑖  changes the variance more than adding  ∆ to one of the smaller values.  

So if a large variance requirement needs to be met, it pays to have a few really large values (i.e. outliers) 

rather than spread the variance around more evenly. 

 

Solution 

Now let's do the math.  Plugging (9) into (7) and (8) and then taking averages yields: 



𝜇𝐵 = 𝑐𝑈 +  𝑎 − 𝑐  𝑡 𝑔𝑎𝑢𝑠𝑠 = 𝑐𝑈 +  𝑎 − 𝑐 𝜇𝑔  (15) 

𝜎𝐵
2 = 𝑐 𝑈 −  𝜇𝐴 

2 +  𝑎 − 𝑐   𝑡 − 𝜇𝐴 
2 𝑔𝑎𝑢𝑠𝑠  (16) 

 

Solving that last term takes a slight bit of work: 

  𝑡 − 𝜇𝐴 
2 𝑔𝑎𝑢𝑠𝑠  

=  𝑑𝑡𝑃𝐷𝐹𝑔𝑎𝑢𝑠𝑠

∞

−∞

 𝑡 − 𝜇𝐴 
2 

=  𝑑𝑡𝑃𝐷𝐹𝑔𝑎𝑢𝑠𝑠

∞

−∞

  𝑡 − 𝜇𝑔 −  𝜇𝐴 − 𝜇𝑔  
2

 

=  𝑑𝑡𝑃𝐷𝐹𝑔𝑎𝑢𝑠𝑠

∞

−∞

  𝑡 − 𝜇𝑔 
2
− 2 𝑡 − 𝜇𝑔  𝜇𝐴 − 𝜇𝑔 +  𝜇𝐴 − 𝜇𝑔 

2
  

(17) 

Note that the first term is the variance, the middle term integrates to −2 𝜇𝑔 − 𝜇𝑔  𝜇𝐴 − 𝜇𝑔 = 0, and the 

last term is constant.  Then 

  𝑡 − 𝜇𝐴 
2 𝑔𝑎𝑢𝑠𝑠 = 𝜎𝑔

2 +  𝜇𝐴 − 𝜇𝑔 
2
 (18) 

Therefore (16) becomes 

𝜎𝐵
2 = 𝑐 𝑈 −  𝜇𝐴 

2 +  𝑎 − 𝑐  𝜎𝑔
2 +  𝜇𝐴 − 𝜇𝑔 

2
  (19) 

 

Recap: 𝑎, 𝜇𝐵, 𝜎𝐵
2, 𝜇𝐴, and 𝜎𝐴

2 are known quantities.  A functional form for the 𝑡𝑖  has been assumed, but this 

model has 4 free parameters: 𝑐, 𝑈, 𝜇𝑔 , and 𝜎𝑔
2.  There are seven equations that must be obeyed: (10), (11), 

(12), (13), (14), (15), and (19).  I solve these equations as follows: use (15) and (19) to solve for 𝑈 and 𝜇𝑔  as 

a function of 𝑐 and 𝜎𝑔
2, and then see what values of 𝑐 and 𝜎𝑔

2 satisfy (10), (11), (12), (13), and (14).  

Ultimately, I will end up picking a value for 𝜎𝑔
2. 

 

Solving (15) and (19) for 𝑈 and 𝜇𝑔  is easier if the variables are changed to 

𝑈 ≡ 𝑈 − 𝜇𝐴 (20) 

𝜇 𝑔 ≡ 𝜇𝑔 −  𝜇𝐴 (21) 

 

Then (15) becomes 

𝜇𝐵 = 𝑐 𝑈 + 𝜇𝐴 +  𝑎 − 𝑐  𝜇 𝑔 +  𝜇𝐴 = 𝑐𝑈 +  𝑎 − 𝑐 𝜇 𝑔 + 𝑎𝜇𝐴 

⇒ 0 = 𝑐𝑈 +  𝑎 − 𝑐 𝜇 𝑔  

⇒ 𝑈 = − 
𝑎 − 𝑐

𝑐
 𝜇 𝑔  

(22) 

and (19) becomes 

𝜎𝐵
2 = 𝑐𝑈 2 +  𝑎 − 𝑐  𝜎𝑔

2 + 𝜇 𝑔
2  (23) 

 

Define 

𝜎𝐵𝑔
2 ≡ 𝜎𝐵

2 −  𝑎 − 𝑐 𝜎𝑔
2 (24) 

then (23) becomes 

𝜎𝐵𝑔
2 = 𝑐𝑈 2 +  𝑎 − 𝑐 𝜇 𝑔

2  (25) 

 



Substituting (22) into (25) yields 

𝜎𝐵𝑔
2 =

 𝑎 − 𝑐 2

𝑐
𝜇 𝑔

2 +  𝑎 − 𝑐 𝜇 𝑔
2 =  

𝑎 − 𝑐

𝑐
  𝑎 − 𝑐 + 𝑐 𝜇 𝑔

2 = 𝑎  
𝑎 − 𝑐

𝑐
 𝜇 𝑔

2  

 

⇒ 𝜇 𝑔 = − 
𝑐

𝑎 𝑎 − 𝑐 
𝜎𝐵𝑔  

⇒ 𝜇𝑔 = 𝜇𝐴 − 
𝑐

𝑎 𝑎 − 𝑐 
𝜎𝐵𝑔  

≈ 𝜇𝐴 −
 𝑐

𝑎
𝜎𝐵𝑔        𝑖𝑓 𝑐 ≪ 𝑎 

(26) 

Note: took the minus sign for 𝜇 𝑔  in (26) to satisfy the first inequality of (12). 

 

Then (22) becomes 

𝑈 =  
𝑎 − 𝑐

𝑎𝑐
𝜎𝐵𝑔  

⇒ 𝑈 = 𝜇𝐴 +  
𝑎 − 𝑐

𝑎𝑐
𝜎𝐵𝑔  

≈ 𝜇𝐴 +
1

 𝑐
𝜎𝐵𝑔        𝑖𝑓 𝑐 ≪ 𝑎 

(27) 

 

So, (26) and (27) are solutions for 𝑈 and 𝜇𝑔  as a function of 𝑐 and 𝜎𝑔
2. 

 

The first inequality of both (10) and (12) is always satisfied given (26) and (27) if 

𝜎𝐵𝑔
2 > 0 (28) 

which happens if 

𝜎𝑔 <
1

 𝑎 − 𝑐
𝜎𝐵 (29) 

Since 𝜎𝐴 =
1

 𝑎
𝜎𝐵 <

1

 𝑎−𝑐
𝜎𝐵, one way to over satisfy (29) would be to insist that 𝜎𝑔 < 𝜎𝐴, which is exactly 

what (13) asserts. 

 

The second inequality of (10) is always satisfied, but the second inequality of (12) yields an equation that 

shows one way how 𝑐𝑚𝑎𝑥  arises.  In terms of 𝜇 𝑔 , this second inequality is 

0 > 𝜇 𝑔 > 𝑡𝑚𝑖𝑛 − 𝜇𝐴 

⟹ 𝜇 𝑔
2 <  𝜇𝐴 − 𝑡𝑚𝑖𝑛  

2 

⟹
𝑐

𝑎 𝑎 − 𝑐 
𝜎𝐵𝑔

2 <  𝜇𝐴 − 𝑡𝑚𝑖𝑛  
2 

⟹ 𝑐 𝜎𝐵
2 −  𝑎 − 𝑐 𝜎𝑔

2 < 𝑎 𝑎 − 𝑐  𝜇𝐴 − 𝑡𝑚𝑖𝑛  
2 

⟹ 𝜎𝐵
2𝑐 − 𝑎𝜎𝑔

2𝑐 + 𝜎𝑔
2𝑐2 < 𝑎2 𝜇𝐴 − 𝑡𝑚𝑖𝑛  

2 − 𝑎 𝜇𝐴 − 𝑡𝑚𝑖𝑛  
2𝑐 

⟹  𝜎𝑔
2 𝑐2 +  𝜎𝐵

2 − 𝑎𝜎𝑔
2 + 𝑎 𝜇𝐴 − 𝑡𝑚𝑖𝑛  

2 𝑐 < 𝑎2 𝜇𝐴 − 𝑡𝑚𝑖𝑛  
2 

(30) 

Note that each coefficient of 𝑐 on the left hand side is positive; in particular, 

𝜎𝐵
2 − 𝑎𝜎𝑔

2 > 0 (31) 



by (8) and (13).  Therefore, the left hand side uniformly increases as 𝑐 increases from 0.  But the right hand 

side is constant.  Thus, in order for that inequality to hold, a maximum legitimate value of 𝑐 exists.  Define 

the upper bound imposed by this inequality as 𝑐𝑚𝑎𝑥 1. 

 

Solving for 𝑐𝑚𝑎𝑥 1 is trivial because (30) is a quadratic equation in 𝑐.  In particular, let 

𝑘2 ≡ 𝜎𝑔
2 > 0 (32) 

𝑘1 ≡ 𝜎𝐵
2 − 𝑎𝜎𝑔

2 + 𝑎 𝜇𝐴 − 𝑡𝑚𝑖𝑛  
2 > 0 (33) 

𝑘0 ≡ −𝑎2 𝜇𝐴 − 𝑡𝑚𝑖𝑛  
2 < 0 (34) 

be the coefficients of 𝑐 in (30) after the right hand side is brought over to the left.  Because of the nature of 

the coefficients, it is obvious that the solutions are both real and distinct, one is positive and the other is 

negative, and that you should take the positive one.  Then a robust floating point algorithm for the solution is 

𝑡𝑒𝑟𝑚 = −
1

2
 𝑘1 + 𝑠𝑔𝑛 𝑘1  𝑘1

2 − 4𝑘2𝑘0  (35) 

𝑟𝑜𝑜𝑡1 = 𝑡𝑒𝑟𝑚 𝑘2  (36) 

𝑟𝑜𝑜𝑡2 = 𝑘0 𝑡𝑒𝑟𝑚  (37) 

where 𝑐𝑚𝑎𝑥 1 is assigned to the positive root.  Because 𝑘1 > 0, the positive root will be 𝑟𝑜𝑜𝑡2, so you can 

directly write 

𝑐𝑚𝑎𝑥 1 =
−2𝑘0

𝑘1 +  𝑘1
2 − 4𝑘2𝑘0

 (38) 

 

Next is a tricky issue: what value should be chosen for 𝜎𝑔?  Since you have no real idea what 𝜎𝑔  is, 

ultimately you have to make a guess.  One choice that seemingly satisfies (13) and (14) is: 

𝜎𝑔 = min  
𝜇𝑔 − 𝑡𝑚𝑖𝑛

4
,𝜎𝐴     (39) 

The problem with this is that 𝜇𝑔  is not a constant—it is a function of 𝑐 as given by (26). 

 

There may be multiple ways to proceed here, but a simple approach is to assume that 𝜇𝑔  has a minimum 

value, say 

𝜇𝑔 ,𝑚𝑖𝑛 ≡
𝜇𝐴 + 𝑡𝑚𝑖𝑛

2
 (40) 

Then take 

𝜎𝑔 = min  
𝜇𝑔 ,𝑚𝑖𝑛 − 𝑡𝑚𝑖𝑛

4
,𝜎𝐴     (41) 

But to guarantee 𝜇𝑔 ≥ 𝜇𝑔 ,𝑚𝑖𝑛  imposes yet another constraint on the maximum value of 𝑐.  From (26): 

𝜇𝑔 = 𝜇𝐴 − 
𝑐

𝑎 𝑎 − 𝑐 
𝜎𝐵𝑔 ≥ 𝜇𝑔 ,𝑚𝑖𝑛  

⇒
𝑐

𝑎 𝑎 − 𝑐 
𝜎𝐵𝑔

2 ≤  𝜇𝐴 − 𝜇𝑔 ,𝑚𝑖𝑛  
2
 

(42) 

Comparing (42) with (30) reveals that it is the same equation, with the same solution, provided that you 

change 𝑡𝑚𝑖𝑛  to 𝜇𝑔 ,𝑚𝑖𝑛  in the coefficient equations (33) and (34).  Thus, a second upper bound on 𝑐 is found; 

call it 𝑐𝑚𝑎𝑥2.  Then 

http://en.wikipedia.org/wiki/Quadratic_equation#Floating_point_implementation


𝑐𝑚𝑎𝑥 = 𝑚𝑖𝑛 𝑐𝑚𝑎𝑥 1, 𝑐𝑚𝑎𝑥 2  
(43) 

 

Another interesting quantity to solve for is the variance due to the outliers.  This comes from (23) as 

𝜎𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠
2 = 𝑐𝑈 2 (44) 

Invoking (27) yields 

𝜎𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠
2 =

𝑎 − 𝑐

𝑎
𝜎𝐵𝑔

2 =
𝑎 − 𝑐

𝑎
 𝜎𝐵

2 −  𝑎 − 𝑐 𝜎𝑔
2  (45) 

If want to find the minimum outlier variance, note that (45) is a quadratic function of 𝑐 where the 𝑐2 term has 

a negative coefficient.  But 𝑐 is an integer in the range  1, 𝑐𝑚𝑎𝑥  , so this means that the minimum of (45) 

occurs at one of those endpoints (i.e. either at 1 or 𝑐𝑚𝑎𝑥 ). 

 

Computer algorithm 

Benchmark implements the model above.  It's overall goal is to determine the minimum fraction of the observed 

variance that must be attributable to outliers.  If that fraction exceeds a threshold, then a warning is issued. 

 

Benchmark starts off with knowing 𝑎, 𝜇𝐵, and 𝜎𝐵.  It skips considering the outlier model if 𝑎 < 16 or  𝜎𝐵 = 0. 

 

If it passes that test, then it calculates 𝜇𝐴 and 𝜎𝐴 using (7) and (8).  Next it takes 𝑡𝑚𝑖𝑛 = 0 (which is the most 

conservative choice possible—it maximizes the ability of the Gaussian part to explain the measured variance 

without having to appeal to outliers).  Then it calculates 𝜎𝑔  using (41)(39).  Then it solves for 𝑐𝑚𝑎𝑥  using 

(43).  It skips considering the outlier model if 𝑐𝑚𝑎𝑥 < 1. 

 

Next it solves for the minimum variance caused by the outliers using (45) with 𝑐 equal to 1 and 𝑐𝑚𝑎𝑥 , and 

taking the minimum of those results; call it 𝜎𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 ,𝑚𝑖𝑛
2 .  If the ratio 𝜎𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 ,𝑚𝑖𝑛

2 𝜎𝐵
2  exceeds 1%, then a 

warning of some type is issued. 

 

So, what does this outlier model produce for the "nanobenchmark" code in Listing 3?  The standard deviation 

warnings look like 
--block sd values MAY NOT REFLECT TASK'S INTRINSIC VARIATION 

--guesstimate: environmental noise explains at least 100.0% of the measured sd 

---------- 

--action sd values ALMOST CERTAINLY GROSSLY INFLATED by outliers 

--they cause at least 99.60022873987793% of the measured VARIANCE according to a equi-valued outlier model 

--model quantities: a = 67108864, muB = 1.395522860870968, sigmaB = 0.0013859776344426547, muA = 

2.079491109953773E-8, sigmaA = 1.6918672295442562E-7, tMin = 0.0, muGMin = 1.0397455549768865E-8, sigmaG = 

2.5993638874422163E-9, cMax1 = 998962, cMax2 = 252560, cMax = 252560, cOutMin = 252560, varOutMin = 

1.9132546611046498E-6, muG(cOutMin) = 1.0397473789305775E-8, U(cOutMin) = 2.773147736700622E-6 

 

The first part of the warning about the block sd values is produced by the noise floor measurement described 

above.  In the run shown above, the noise floor explains 100% of task's sd.  But in two earlier runs, not 

shown here, it only explained around 15% and 30% of task's sd, which illustrates the unrepeatability of this 

approach. 

 

The second part of the warning about the action sd values is produced by the outlier model described in this 

section.  Note that 𝑐𝑚𝑎𝑥 = 252,560 is vastly smaller than 𝑎 = 67,108,864, so the outliers are truly rare 

events.  Furthermore, note when evaluated at 𝑐 = 𝑐𝑚𝑎𝑥 , then 𝜇𝑔 ≈ 𝜇𝑔 ,𝑚𝑖𝑛 ≈ 1.04 × 10−8 ≈ 𝜇𝐴 2  and  

𝑈 ≈ 2.77 × 10−6 ≈ 266𝜇𝑔 .  In other words, the outliers truly are much larger than the typical Gaussian 

times.  If these outliers are actually caused by context switches, and if the context switch rate reported above 

is accurate, then a better value to use would be 𝑐 = 2,500 ≈ 𝑐𝑚𝑎𝑥 100 .  Then from the 𝑐 ≪ 𝑎 result of (27), 



𝑈 should increase by about 10 times to about 28 microseconds, which is about 56,000 clock cycles.  It would 

be interesting to see if that value of 𝑈 jives with other measurements of the impact of context switches. 

 

  



Confidence intervals 
 

Interpretation 

The frequentist interpretation of confidence intervals is that if you repeat the confidence interval estimation 

procedure many times, p is the probability that any given confidence interval contains the true value.  Other 

interpretations of probability (e.g. Bayesian) interpret confidence intervals differently.  However, it is always 

wrong to say that p is probability that the true value lies inside the interval.  This is subtly false: the true 

value has no uncertainty, even if it is unknown; it is either inside or outside a given interval.  The only 

uncertainty is with the estimation procedure. 

 

Relation with spread of measurements 

Do not confuse the spread indicated by confidence intervals of the statistics with spread in the measurements 

themselves—they are independent quantities.  For example,  the confidence interval for both the mean and 

standard deviation could be very small (i.e. those values are precisely known), but the standard deviation 

could still be large relative to the mean (so the measurements themselves will be very scattered). 

 

Alternatives 

Confidence levels are not the only way to see if the means, say, of two populations are distinguishable.  

Statistical tests like Welch's t test could also be used.  Unfortunately, many of these tests (e.g. Welch's) 

assume that populations have a Gaussian PDF, an assumption that can be suboptimal in benchmarking. 

 

Furthermore, although simple statistics like the mean may have standard statistical tests, other statistics such 

as the standard deviation may not. 

 

  

http://en.wikipedia.org/wiki/Frequentist
http://en.wikipedia.org/wiki/Bayesian_probability
http://en.wikipedia.org/wiki/Confidence_interval#How_to_understand_confidence_intervals
http://en.wikipedia.org/wiki/Welch%27s_t_test


Gaussian PDF issues 
The most common assumption when modeling execution times is that the PDF is a Gaussian.  This is 

fundamentally appealing because of the Central Limit Theorem, but it is also practical since so many 

analytical results exist for Gaussian PDFs.  Indeed, these reasons are why the outlier model above took the 

"non-outlier" execution times as being Gaussian distributed. 

 

Nevertheless, the statistics section asserted that "it [bootstrapping] may yield more narrow and accurate 

confidence intervals than if you make wrong assumptions about the PDF (e.g. that it is Gaussian)".  

Furthermore, at several points above I cautioned against assuming a Gaussian PDF in the benchmarking 

context.  This section will justify those remarks by showing how a Gaussian model can yield inferior results 

compared to nonparametric bootstrapping. 

 

One problem with assuming a Gaussian PDF is that it implies negative execution times: even if the mean is 

positive, there is some part of the left tail that eventually extends below zero.  But negative execution times 

are impossible, so this is clearly an error at some (possibly minuscule) level.  In contrast, nonparametric 

bootstrapping never involves unphysical values (because it only uses resamples from the original 

measurements). 

  

One scenario where a Gaussian PDF assumption produces less accurate results than bootstrapping is when 

discrete time errors dominate.  Specifically, suppose that a computer's time measurement behaves as follows: 

if an event occurs inside the semi-open interval  𝑞 𝑑𝑡,  𝑞 + 1 𝑑𝑡 , where 𝑞 is an integer and 𝑑𝑡 is some fixed 

quantum of time, then it is measured as occurring at time 𝑞 𝑑𝑡.  Further, suppose that the task's real execution 

time has a PDF that is symmetric about  𝑞 + 1 𝑑𝑡, and that its standard deviation is ≪ 𝑑𝑡.  Then task's 

measured times will essentially follow a binary distribution: ~50% of the measurements will be 𝑞 𝑑𝑡, the 

other ~50% will be  𝑞 + 1 𝑑𝑡.  The mean of this binary distribution is  𝑞 + 0.5 𝑑𝑡, and its standard 

deviation is 0.5𝑑𝑡.  If you compare this binary distribution versus a Gaussian with 𝑚𝑒𝑎𝑛 = 𝜇 =
 𝑞 + 0.5 𝑑𝑡 and 𝑠𝑑 = 𝜎 = 0.5𝑑𝑡, the Gaussian is clearly far more spread out in its range of likely values.  

This will be reflected in wider confidence intervals computed using this Gaussian than confidence intervals 

computed using bootstrapping.  (Again, bootstrapping's resampling from the original measurements will tend 

to reproduce the binary distribution more closely.) 

 
  

http://en.wikipedia.org/wiki/Central_Limit_Theorem
http://www.ibm.com/developerworks/java/library/j-benchmark2.html#statistics


Task code: Callable versus Runnable 
In the context of discussing task code for my benchmarking framework, I claimed "it is slightly easier to 

prevent DCE with a Callable than a Runnable".  

 

That comment is perfectly true, however, there is one other consideration: the Callable DCE prevention rule 

might generate more garbage than if the task was written as a Runnable, and this could distort the benchmark.  

This happens if Callable.call returns a new object for each invocation, and if it is executed many times 

during benchmarking.  In contrast, Runnable.run merely need store the effects of its computations in some 

internal state, which could be something very lightweight like a primitive field, so that no new objects are 

created during benchmarking.  This distinction is only important when writing the lightest weight 

microbenchmarks, and is probably irrelevant when benchmarking real applications. 

 

An example will make this obvious.  Consider modifying Listing 1 in Part 2 so that it now benchmarks the 

computation of the 5
th

 Fibonacci number: 

Listing 4. Callable benchmark of the 5th Fibonacci number 
    public static void main(String[] args) throws Exception { 

        Callable<Integer> task = new Callable<Integer>() { public Integer call() { return fibonacci(5); } }; 

        System.out.println("fibonacci(5): " + new Benchmark(task)); 

    } 

The 5
th

 Fibonacci number takes vastly less time to compute than the 35
th

: my configuration found a mean 

execution time of 34.249 ns (confidence interval < 13 ps around this mean).  In fact, each benchmark 

measurement executed task 33,554,432 times in order to achieve the default cumulative execution time goal 

of at least 1 second.  That means that over 33 million Integer instances were created during each 

measurement.  To see how much of an impact all this object creation and garbage collection has, lets rewrite 

the above using a Runnable: 

Listing 5. Runnable benchmark of the 5th Fibonacci number 
    public static void main(String[] args) throws Exception { 

        Runnable task = new Runnable() { 

            private int sumOfResults = 0; 

            public void run() { sumOfResults += fibonacci(5); } 

            @Override public String toString() { return "sumOfResults = " + sumOfResults; } 

        }; 

        System.out.println("fibonacci(5): " + new Benchmark(task).toStringFull()); 

    } 

Compared to Listing 4, the Runnable version is slightly longer (as it inevitably is, except that it has no 

generics—this is one slight advantage with writing your task as a Runnable).  For the results, I find a mean 

execution time of 32.871 ns (confidence interval < 3 ps around this mean).  So, the Callable version is slower 

than the Runnable version. 

 

But it is only slower by ~4.2%.  I am shocked at how small of an effect that is: I was expecting it to be much 

larger.  These results suggest that the JVM is doing something really clever like Integer instance recycling 

instead of new instance creation.  To test this, I modified the above code to use Random.nextInt instead of 

fibonacci(5).  The results are that the Callable version now has a mean of 49.685 ns, while the Runnable 

version has a mean of 34.972 ns, so the Callable version is ~42% slower than the Runnable version, which is a 

bit more like what I would expect.  Thus, it looks like the JVM must be doing something clever with that 

Fibonnnaci code.  But I am still puzzled: an ~15 ns overhead (49.685 – 34.972) for an Integer instance 

creation and garbage collection still seems low—are modern JVMs just that good, at least with simple objects 

and object graphs like in the code above? 

  

http://www.ibm.com/developerworks/java/library/j-benchmark2.html#tc
http://www.ibm.com/developerworks/java/library/j-benchmark2.html#listing1


Portfolio optimization 
The section on portfolio optimization, naturally, focused mainly on the benchmarking aspects of the problem.  

However, I am worried that I will be besieged with emails from readers who want to know more about 

portfolio optimization.  That, or else they are already knowledgeable, and find fault with the results!  So, I 

decided to add some material here to hopefully stave off the deluge. 

 

Dangers 

With portfolio optimization, a little knowledge is worse than none, because it might lead you to naively apply 

the theory, which is likely to lead to worse portfolios than if you did nothing at all.  For a layman-accessible 

account of portfolio optimization and some of its pitfalls, I suggest that you read Chapter 5: Optimal 

Portfolio Allocations in William J. Bernstein's book The Intelligent Asset Allocator.  (In fact, that whole book 

is worth reading: it is the single best practical book on investing that I have come across.)  For more 

advanced resources on portfolio optimization, the Web is your friend: seek and ye shall find. 

  

Data 

One of the dangers that Bernstein mentions for portfolios constructed from indices of the major asset classes 

is that sufficient amounts of data must be used—over 10 years’ worth—to account for a few cycles of mean 

reversion.  (If you use too recent of data, your "optimized" portfolio will be dominated by yesterday's 

winners, but going forward, those are more likely to be tomorrow's losers.)  There is a large body of literature 

on the long term mean reversion behavior of markets (as well as short term momentum effects); see, for 

example, the introduction of this paper for references or this talk.  People routinely try to come up with 

strategies to exploit this.  All I want to point out here is that the data that used in the text was chosen solely 

because it is what I had readily available.  It is perfectly fine for the execution characteristics that I wanted to 

explore in the article.  But it is almost certainly not the data that a skilled financial advisor would use to give 

you long term portfolio advice (e.g. he would use major asset class index funds instead).  Corollary: any 

emails asking me what the "optimal" portfolios look like from my OEX data will be rudely ignored. 

 

Constraints 

Another danger that Bernstein mentions with naive application of portfolio optimization is that a few assets 

often end up dominating the portfolio, which is something that few sane investors would do.  In order to 

prevent this, a common feature of most portfolio optimization software is that you can specify constraints on 

the asset weights.  For example, if you are considering 10 assets, which if uniformly allocated would have 

10% weight in each asset, you may wish to enforce the rule that no individual asset may be less than 5% or 

more than 20% of the portfolio.  The EfTask class mentioned in the article can be run in either mode 

(with/without constraints).  The results presented in the article have no constraints on the asset weights, 

simply because I did not want to bring up another non-benchmark related concept.  But a real financial 

advisor would almost certainly impose constraints.  Figure 3 shows the effect of using constraints on 

execution time and is analogous to Figure 6 in the article: 

http://www.ibm.com/developerworks/java/library/j-benchmark2.html#opc
http://en.wikipedia.org/wiki/William_J._Bernstein
http://www.efficientfrontier.com/BOOK/title.shtml
http://en.wikipedia.org/wiki/Mean_reversion
http://en.wikipedia.org/wiki/Mean_reversion
http://www.istfin.eco.unisi.ch/a_sbuelz.pdf
http://www.vanguard.com/bogle_site/lib/sp19980129.html
http://seekingalpha.com/article/23359-mean-reversion-when-there-is-blood-in-the-streets-it-s-time-to-buy
http://www.ibm.com/developerworks/java/library/j-benchmark2.html#fig6


Figure 3.  Portfolio optimization execution time 

 
So, the execution time still grows approximately cubically as a function of the number of assets.  But it grows 

faster, and has more scatter.  This illustrates how certain sets of assets are very expensive to optimize in the 

presence of constraints. 

 

Figure 4 shows the effect of using constraints on portfolio quality and is analogous to Figure 7 in the article: 

Figure 4.  Portfolio quality 

 
The maximum Sharpe ratio with constraints imposed has decreasing extrema (on both the high and low side) 

as the number of assets increases.  This is presumably due to the really good and really bad assets being 

increasingly diluted in weight as more assets get considered. 

 

Length of time series 

The length of the time series that is used has very little effect on the overall execution time unless truly 

massive lengths are present.  Here, the time series is used to calculate the expected returns and covariance 

matrix inputs for the portfolio optimization.  This calculation is vastly quicker than solving for the optimal 

http://www.ibm.com/developerworks/java/library/j-benchmark2.html#fig7


portfolio, at least for the lengths of time series that you commonly use.  For example, my weekly OEX data 

has 238 elements in each time series.  Doubling this length causes almost no change in execution time. 

 

Sharpe ratio values 

Figure 6 in Part 2 of the article has maximal Sharpe ratios of ~2 while Figure 4 above has maximal Sharpe 

ratios of ~1.6.  Either value is much larger than the 3-year Sharpe ratio (as of 2007/12/31) for the S&P 100, 

which is 0.5475. 

 

Why are my Sharpe ratio values so much larger than what is reported for the index?  First, the article 

mentioned that dividends were not included in the return data, and if they were, my OEX Sharpe ratios would 

increase, making even larger of a gap.  On the other hand, the Sharpe ratio for the S&P 100 weights the 

assets in the index by their market cap.  In contrast, my OEX Sharpe ratios are calculated with the portfolio 

allowed to have either complete freedom (if no constraints used) or moderate freedom (if constraints 

imposed) in the asset weights, which clearly gives it a huge edge in increasing the ex post Sharpe ratio. 

 

There is another interesting phenomenon relating to large Sharpe ratio values, namely, how they depend on 

the sampling period of the historical returns.  Figure 5 again uses OEX data, but instead of weekly samples, it 

uses monthly samples: 

Figure 5.  Portfolio quality (monthly samples) 

 
No constraints on the asset weights were imposed, so this figure is comparable to Figure 6 in Part 2 of the 

article except that it uses monthly data.  But the results have one difference: this graph has a fair number of 

huge outliers.  There is not a fund manager in the world who wouldn't sell his first–born son for a Sharpe 

ratio of 5, let alone 14! 

 

Think that those are spectacular results?  Well consider Figure 6, which was obtained using yearly data for all 

non-tax-exempt Vanguard mutual funds that have existed over 1998-2007 (there are 81 such funds): 

http://www.ibm.com/developerworks/java/library/j-benchmark2.html#fig6
http://www.ratings.com/spf/pdf/index/SP_100_Factsheet.pdf
http://www.ibm.com/developerworks/java/library/j-benchmark2.html#fig6


Figure 6.  Portfolio quality (yearly samples, Vanguard funds) 

 
Now we see outliers with astronomical values! 

 

What causes this Sharpe ratio blowup as the sample frequency is decreased?  It does not seem to be a defect 

in the WebCab portfolio optimization code.  Instead, it appears to be caused by spurious covariances due to 

insufficient data.  To see this, consider Figure 7, which uses that same Vanguard data as above, but this time 

takes the maximum Sharpe ratio for a set of assets as the independent variable, and plots both the excess 

return as well as the standard deviation that went into calculating that Sharpe ratio: 

Figure 7.  Excess Return and standard deviation as a function of Sharpe ratio 

 
What this figure clearly shows is that the really large Sharp ratios are primarily achieved by portfolios with 

extremely small standard deviation, as opposed to large excess return.  This is exactly what you would 

expect: the maximum excess return of the portfolio can be no better than that of the best asset's excess return, 

but the portfolio's standard deviation can go to zero by a fortuitous covariance matrix. 

 

As the sampling frequency decreases, you get fewer data points in each historical time series.  For example, 

for the 3 year OEX data with weekly sampling, each time series has 3 × 52 = 156 elements, but with 



monthly samples only has 3 × 12 = 36 elements.  And the Vanguard data only has 10 × 1 = 10 elements 

per time series. 

 

What I think is happening is that as the number of elements per time series decreases, the chance greatly 

increases that you will find several time series that appear to be anticorrelated (or at least totally 

uncorrelated) with each other, and it is this low correlation that allows low standard deviation portfolios to be 

constructed.  But these low correlations are bogus: they are caused by using insufficient numbers of data 

points, especially relative to the large number of assets being considered (100 for OEX, 81 for Vanguard). 

  



Endnotes 
                                                 
1
 Get back to me if you know of a solution to this problem.  I was unable to find anything in a web search; 

the closest result that might be relevant is the order statistic distribution function. 

 
2
 Similarly, 𝑆𝑛

2 is a better estimator than 𝑆𝑛−1
2 for the variance because it has lower MSE even though 𝑆𝑛

2 is 

biased while 𝑆𝑛−1
2  is unbiased.  In fact, 𝑆𝑛+1

2  has even lower MSE than 𝑆𝑛
2.  I am not sure why 𝑆𝑛+1

2  is not 

commonly used; I could find no discussions of it on the web besides that wikipedia hyperlink... 

 
3
 The details of how benchmarking is actually carried out is highly customizable; see Benchmark's javadocs, as 

well as the Benchmark.Params inner class. 

 
4
 Loop unrolling is probably the main optimization.  The fundamental bitwise operations, however, cannot be 

eliminated. 

 
5
  perfmon.msc with system/context switches or thread/context switches.  Access this via Control Panel → 

Administrative Tools → Performance, then click on the "+" icon and select either System or Thread as the 

Performance object, then select Context Switches/sec from the list.  See also this tutorial. 

 
6
 See the bullet point on the resolution of getCurrentThreadCpuTime in the Execution time measurement section 

of Part 1. 

 
7
 See the Benchmark.Params.sdFractionThreshold field. 

http://en.wikipedia.org/wiki/Order_statistic#Distribution_of_each_order_statistic_of_an_absolutely_continuous_distribution
http://en.wikipedia.org/wiki/Mean_squared_error#Examples
http://www.thomaskoetzing.de/index.php?option=com_content&task=view&id=196&Itemid=199
http://www.ibm.com/developerworks/java/library/j-benchmark1.html#etm

